Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт Страница 32
- Категория: Разная литература / Зарубежная образовательная литература
- Автор: Йэн Стюарт
- Страниц: 85
- Добавлено: 2024-09-07 09:56:56
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала
Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт» бесплатно полную версию:Широкое распространение компьютеров может создать впечатление, что математика уже и не нужна, что сегодняшние технологии позволяют производить самые сложные вычислительные операции за доли секунды.
Это наивное представление побудило известного популяризатора науки Иэна Стюарта показать читателям не самые очевидные заслуги любимой дисциплины, ведь ее роль отнюдь не сводится к расчетам, и благодаря компьютерам, освобождающим нас от монотонной работы, мы просто начинаем заниматься математикой иначе.
Может показаться, что математика вышла из моды и устарела, но такой взгляд ошибочен. Без математики современный мир попросту развалился бы. В доказательство своего утверждения я покажу вам ее применение в политике и юриспруденции, в трансплантологии почек и в доставке заказов из супермаркета, в интернет-безопасности, в киношных спецэффектах и при изготовлении пружин. Мы увидим, что без математики немыслимы медицинские сканеры, цифровая фотография, широкополосные каналы связи и спутниковая навигация, она помогает нам предсказывать результаты климатических изменений, защищаться от террористов и интернет-хакеров.
Именно математика стоит за всеми преобразующими технологиями, которые делают XXI век совершенно непохожим на предшествующую эпоху. Без математики немыслимы и цифровая фотография, и современная связь, и спутниковая навигация, без нее не обойтись при прогнозировании последствий климатических изменений. Этот ряд можно продолжать и продолжать, не забыв упомянуть гуманитарные области и искусство, политику и интернет-безопасность. Словом, считает автор, потребность в этой науке универсальна, она – основа основ.
Математики всегда внимательно относились к практичности методов решения задач, хотя, когда дело стопорится, все сходятся во мнении, что любой метод лучше, чем ничего. С чисто теоретической точки зрения возможность просто доказать, что решение задачи существует, может стать серьезным шагом вперед. Почему? Потому что, если нет уверенности в существовании решения, можно напрасно потерять много времени на его поиски.
Для кого
Книга порадует тех, кто любит математику, пригодится тем, кто учит математике, будет полезна тем, кто уже начал понимать математику.
…математик – это человек, который замечает возможности для применения математики там, где остальные ничего не увидели.
Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт читать онлайн бесплатно
Теперь мы смотрим на эллиптические кривые – уравнения – через призму конечных колец и полей. Геометрический образ кривой здесь, по существу, неприменим, поскольку имеется всего лишь конечное множество точек, но нам удобно пользоваться прежним названием. На рисунке показана типичная фигура и ее дополнительное свойство, известное еще Ферма и Эйлеру и интриговавшее математиков в начале XX века. Имея два решения, можно «сложить» их, чтобы получить еще одно решение, как показано на рисунке. Если решения – рациональные числа, то рациональным числом будет и их сумма. Это не просто «купи два, получи третье бесплатно», а «купи два, получи бесплатно уйму всего», потому что операцию и построение можно повторить. Иногда это вновь приводит нас в одну из начальных точек, но в основном подобные действия генерируют бесконечно много различных решений. Мало того, эти решения имеют красивую алгебраическую структуру: они образуют группу Морделла – Вейля эллиптической кривой. Луис Морделл доказал ее основные свойства, а Андре Вейль обобщил их. Слово «группа» здесь означает, что дополнение подчиняется короткому списку простых правил. Эта группа коммутативна, то есть P + Q = Q + P, что очевидно из рисунка, поскольку прямая, проведенная через P и Q, совпадает с прямой, проведенной через Q и P. Существование такой групповой структуры – явление необычное, и большинство диофантовых уравнений не может этим похвастаться. Многие из них вовсе не имеют решений, некоторые имеют всего по несколько, и трудно предсказать, какое именно уравнение находится перед вами. В настоящее время эллиптические кривые находятся в центре интенсивных исследований – по этой и другим причинам. Доказывая Великую теорему Ферма, Эндрю Уайлс доказал глубокую гипотезу об эллиптических кривых, которая стала одним из ключевых этапов доказательства.
* * *
Групповая структура эллиптической кривой интересует и криптографов. Обычно она рассматривается как форма «дополнения» к решениям, хотя формула там намного сложнее, потому что она коммутативна, и символ + стал традиционным в теории коммутативных групп. В частности, если есть решение (x, y), которое можно рассматривать как точку на плоскости, то мы можем генерировать решения P + P, P + P + P и т. д. Естественно называть такие решения 2P, 3P и т. д.
В 1985 году Нил Коблиц и Виктор Миллер независимо друг от друга поняли, что можно применить этот групповой закон к эллиптической кривой, чтобы получить шифр. Идея в том, чтобы работать в конечном поле с большим числом элементов. Чтобы зашифровать P, мы получаем kP для очень большого целого числа k, что несложно сделать при помощи компьютера, и называем результат Q. Чтобы обратить этот процесс, мы должны начать с Q и найти P – по существу, разделить Q на k. Из-за сложности групповой формулы обратный расчет очень труден, так что мы придумали новый тип «односторонней» функции с потайным входом, а следовательно, новую криптосистему с открытым ключом. Этот подход известен как шифрование на основе эллиптических кривых, или ECC (Elliptic Curve Cryptography). Точно так же, как RSA может применяться с использованием множества разных простых чисел, ECC может применяться с использованием множества разных эллиптических кривых над множеством разных конечных полей, с разным выбором P и множителя k. Здесь опять же имеется секретный ключ, который позволяет выполнить быструю расшифровку.
Преимущество этой системы в том, что относительно небольшая группа дает шифр, соответствующий по надежности шифру RSA, основанному на значительно больших простых числах. Так что шифр на основе эллиптических кривых более эффективен. Шифровать сообщение и расшифровывать его – при условии, что вам известен секретный ключ, – тоже оказывается быстрее и проще. Взломать шифр, если ключ вам неизвестен, трудно. В 2005 году Агентство национальной безопасности США рекомендовало перенести исследования по криптографии с открытыми ключами в новую область эллиптических кривых.
Как и в случае RSA, не существует строгого доказательства надежности системы ECC. Диапазон возможных атак аналогичен диапазону атак, осуществляемых в отношении RSA.
В настоящее время наблюдается серьезный интерес к криптовалютам, которые представляют собой финансовые системы, не контролируемые традиционными банками, хотя банки тоже начинают интересоваться ими. Банки – они такие: всегда начеку, всегда в поисках новых способов делать деньги. Самая известная криптовалюта – биткоин. Надежность биткоинов обеспечивается таким методом, как блокчейн, который представляет собой шифрованную запись всех транзакций с участием конкретной «монеты» (coin). Новые биткоины появляются в результате майнинга, который, по существу, означает выполнение громадного количества бессмысленных в остальном вычислений. Майнинг биткоинов потребляет значительное количество электроэнергии без какой бы то ни было полезной цели, за исключением обогащения нескольких индивидов. В Исландии, где электричество очень дешево благодаря геотермальным электростанциям, на майнинг биткоинов уходит больше электричества, чем используют все домохозяйства страны, вместе взятые. Вряд ли эта деятельность помогает бороться с глобальным потеплением и климатическим кризисом, но дело обстоит именно так.
Биткоин и многие другие криптовалюты используют одну и ту же эллиптическую кривую под заковыристым названием secp256k1. Ее уравнение, y2 = x3 + 7, запоминается гораздо легче, и это кажется главной причиной ее выбора. Шифрование через secp256k1 основано на одной из точек на этой кривой, заданной координатами
x = 55066263022277343669578718895168534326250603453777594175500187360389116729240;
y = 326705100207588169780830851305070431844712733806592439243275938904335757337482424.
Это наглядно показывает, какие гигантские целые числа задействованы в практических реализациях ECC.
* * *
Я уже несколько раз говорил, что надежность системы RSA зиждется на недоказанном предположении о трудоемкости разложения числа на простые множители. Даже если это предположение верно, – а очень похоже, что это действительно так, – не исключено существование и других способов дискредитации надежности шифра (то же самое можно сказать обо всех классических схемах шифрования с открытым ключом). В их числе – появление компьютера, работающего намного быстрее нынешних. Сегодня эта новая угроза безопасности связи уже маячит на горизонте: речь идет о квантовом компьютере.
Классическая физическая система имеет конкретное состояние. Монета на столе может лежать орлом или решкой кверху. Выключатель либо включен, либо выключен. Двоичная цифра (или бит) в памяти компьютера равна либо 0, либо 1. Квантовая система не такова. Квантовый объект – это волна, а волны могут накладываться одна на другую, что на формальном языке называется суперпозицией. Состояние суперпозиции – это смесь состояний компонентов. Знаменитый (мало того, печально знаменитый) кот Шрёдингера может служить
Жалоба
Напишите нам, и мы в срочном порядке примем меры.