Ричард Фейнман - 1. Современная наука о природе, законы механики Страница 23

Тут можно читать бесплатно Ричард Фейнман - 1. Современная наука о природе, законы механики. Жанр: Разная литература / Прочее, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте 500book.ru или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ричард Фейнман - 1. Современная наука о природе, законы механики
  • Категория: Разная литература / Прочее
  • Автор: Ричард Фейнман
  • Год выпуска: неизвестен
  • ISBN: нет данных
  • Издательство: неизвестно
  • Страниц: 60
  • Добавлено: 2019-06-19 22:26:24
  • Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала


Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 1. Современная наука о природе, законы механики» бесплатно полную версию:

Ричард Фейнман - 1. Современная наука о природе, законы механики читать онлайн бесплатно

Ричард Фейнман - 1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман

Взгляните на числа, приведенные в этой таблице. Вы видите, что большинство результатов «близки» к 15, так как почти все они расположены между 12 и 18. Чтобы лучше прочувствовать эти результаты, нарисуем график их распределения. Для этого подсчитаем число испытаний, в которых получилось k выпаде­ний «орла», и отложим это число вверх над k. В результате по­лучим фиг. 6.2.

Вертикальные линии показывают число серий, в которых выпадал k раз «орел». Пунктирная кривая показывает ожидаемое число серий с выпадением k раз «орла», полученное из вычисления вероятностей.

Действительно, в 13 сериях было получено 15 выпадений «орла», то же число серий дало 14 выпадений «орла»; 16 и 17 выпадений получались больше чем 13 раз. Должны ли мы из этого делать вывод, что монетам больше нравится ло­житься «орлом» вверх? А может быть, мы неправы в выборе чис­ла 15 как наиболее правдоподобного? Может быть, в действи­тельности более правдоподобно, что за 30 испытаний получает­ся 16 выпадений «орла»? Минуточку терпения! Если мы сложим вместе результаты всех серий, то общее число испытаний будет 3000, а общее число выпадений «орла» в этих испы­таниях достигает 1492, так что доля испытаний с выпадением «орла» в результате будет 0,497. Это очень близко к половине, но все же несколько меньше. Нет, мы все-таки не можем пред­полагать, что вероятность выпадения «орла» больше, чем 0,5! Тот факт, что в отдельных испытаниях «орел» чаще выпа­дал 16 раз, чем 15, является просто случайным отклонением, или флуктуацией. Мы же по-прежнему ожидаем, что наиболее правдоподобным числом выпадений должно быть 15.

Можно спросить: а какова вероятность того, что в серии из 30 испытаний «орел» выпадет 15 раз или 16, или какое-то дру­гое число раз? Мы говорим, что вероятность выпадения «орла» в серии из одного испытания равна 0,5; соответственно вероят­ность невыпадения тоже равна 0,5. В серии из двух испытаний возможны четыре исхода: ОО, OP, PO, PP. Так как каждый из них равновероятен, то можно заключить: а) вероятность двух выпадений «орла» равна 1/4; б) вероятность одного выпадения «орла» равна 1/4; в) вероятность невыпадения «орла» равна 1/4. Это происходит потому, что существуют две возможности из четырех равных получить одно выпадение «ор­ла» и только одна возможность получить два выпадения или не получить ни одного.

Рассмотрим теперь серию из трех испытаний. Третье испы­тание с равной вероятностью может дать либо «орел», либо «решку», поэтому существует только один способ получения трех выпадений «орла»: мы должны получить два выпадения «орла» в двух первых испытаниях и затем выпадение «орла» в по­следнем. Однако получить два выпадения «орла» можно уже тремя способами: после двух выпадений «орла» может выпасть «решка» и еще два способа — после одного выпадения «орла» в первых двух испытаниях выпадет «орел» в третьем. Так что число равновероятных способов получить 3, 2, 1 и 0 выпадений «орла» будет соответственно равно 1, 3, 3 и 1; полное же число всех возможных способов равно 8. Таким образом, получаются следующие вероятности: 1/8. 3/8, 3/8, 1/8.

Эти результаты удобно записать в виде диаграммы (фиг. 6.3).

Фиг. 6.3. Диаграмма, иллю­стрирующая число различных возможностей получения 0, 1, 2 и 3 выпадений «орла» в серии из трех испытаний.

Ясно, что эту диаграмму можно продолжить, если мы инте­ресуемся еще большим числом испытаний. На фиг. 6.4 приведена аналогичная диаграмма для шести испытаний.

Фиг. 6.4. Диаграмма, подобная изображенной на фиг. 6.3, для серии из шести испытаний.

Число «спо­собов», соответствующих каждой точке диаграммы,— это про­сто число различных «путей» (т. е., попросту говоря, последо­вательность выпадения «орла» и «решки»), которыми можно прийти в эту точку из начальной, не возвращаясь при этом назад, а высота этой точки дает общее число выпадений «орла». Этот набор чисел известен под названием треугольника Паскаля, а сами числа называются биномиальными коэффициентами, поскольку они появляются при разложении выражения (а+b)n, Обычно эти числа на нашей диаграмме обозначаются символом

(), или Сnk(число сочетаний из n по k), где n— полное число

испытаний, а k — число выпадений «орла». Отмечу попутно, что биномиальные коэффициенты можно вычислять по формуле

(6.4)

где символ п!, называемый «n-факториалом», обозначает про­изведение всех целых чисел от 1 до n, т. е. 1 · 2 · 3 . . . (n-1)·п. Теперь уже все готово для того, чтобы с помощью выражения (6.1) подсчитать вероятность Р (k, n) выпадения k раз «орла»! в серии из nиспытаний. Полное число всех возможностей бу­дет 2" (поскольку в каждом испытании возможны два исхода), а число равновероятных комбинаций, в которых выпадет «орел», будет () , так что

(6.5)

Поскольку Р (k, n) — доля тех серий испытаний, в кото­рых выпадение «орла» ожидается k раз, то из ста серий k вы­падений «орла» ожидается 100 Р (k, n) раз. Пунктирная кривая на фиг. 6.2 проведена как раз через точки функции 100 Р (k, 30). Видите, мы ожидали получить 15 выпадений «орла» в 14 или 15 сериях испытаний, а получили только в 13. Мы ожидали полу­чить 16 выпадений «орла» в 13 или 14 сериях испытаний, а по­лучили в 16. Но такие флуктуации вполне допускаются «пра­вилами игры».

Использованный здесь метод можно применять и в более об­щей ситуации, где в каждом единичном испытании возможны только два исхода, которые давайте обозначим через В (выигрыш) и П (проигрыш). Вообще говоря, вероятности В и П в каждом отдельном испытании могут быть разными. Пусть р, например, будет вероятностью результата В. Тогда q (вероятность резуль­тата П) должна быть равна (1-р). В серии из nиспытаний вероятность того, что результат В получится k раз, равна

(6.6)

Эта функция вероятностей называется биномиальным законом распределения вероятности.

§ 3. Случайные блуждания

Существует еще одна интересная задача, при решении кото­рой не обойтись без понятия вероятности. Это проблема «слу­чайных блужданий». В простейшем варианте эта задача выгля­дит следующим образом. Вообразите себе игру, в которой игрок, начиная от точки х=0, за каждый ход может продвинуться либо вперед (до точки х), либо назад (до точки -х), причем ре­шение о том, куда ему идти, принимается совершенно случайно, ну, например, с помощью подбрасывания монеты. Как описать результат такого движения? В более общей форме эта задача описывает движение атомов (или других частиц) в газе — так называемое броуновское движение — или образование ошибки при измерениях. Вы увидите, насколько проблема «случайных блужданий» тесно связана с описанным выше опытом с подбра­сыванием монеты.

Прежде всего давайте рассмотрим несколько примеров слу­чайных блужданий. Их можно описать «чистым» продвижением DNза N шагов. На фиг. 6.5 показаны три примера путей при случайном блуждании.

Фиг. 6.5. Три примера случайного блуждания.

По горизонтали отложено число шагов N, по вертикали — координата

D(N), т. е. чистое расстояние от начальной точки.

(При построении их в качестве случай­ной последовательности решений о том, куда сделать следующий шаг, использовались результаты подбрасывания монеты, при­веденные на фиг. 6.1.)

Что можно сказать о таком движении? Ну, во-первых, можно спросить: как далеко мы в среднем продвинемся? Нужно ожи­дать, что среднего продвижения вообще не будет, поскольку мы с равной вероятностью можем идти как вперед, так и назад. Однако чувствуется, что с увеличением N мы все с большей вероятно­стью можем блуждать где-то все дальше и дальше от начальной точки. Поэтому возникает вопрос: каково среднее абсолютное расстояние, т. е. каково среднее значение \D\? Впрочем, удобнее иметь дело не с |D|, а с D2; эта величина положительна как для положительного, так и для отрицательного движения и поэтому тоже может служить разумной мерой таких случайных блу­жданий.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.