Искусственные внешние ресурсы для освоения космоса - Алексей Леонидович Полюх Страница 26

Тут можно читать бесплатно Искусственные внешние ресурсы для освоения космоса - Алексей Леонидович Полюх. Жанр: Научные и научно-популярные книги / Прочая научная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте 500book.ru или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Искусственные внешние ресурсы для освоения космоса - Алексей Леонидович Полюх

Искусственные внешние ресурсы для освоения космоса - Алексей Леонидович Полюх краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Искусственные внешние ресурсы для освоения космоса - Алексей Леонидович Полюх» бесплатно полную версию:

Это первая часть книги (главы 1–4 из 8 запланированных), в которой автор пытается объяснить, почему всё-таки надо осваивать космос и как это сделать почти без затрат. Это технический текст, фантастики здесь нет. Автор расскажет вам, как сделать лунный парашют, где взять много луца, как построить гравитационную электростанцию, запускать ракеты без топлива со скоростью 50 км/с и отправить звездолёт к Альфе Центавре.

Искусственные внешние ресурсы для освоения космоса - Алексей Леонидович Полюх читать онлайн бесплатно

Искусственные внешние ресурсы для освоения космоса - Алексей Леонидович Полюх - читать книгу онлайн бесплатно, автор Алексей Леонидович Полюх

"парашютный" вариант сопла — очень большой купол из тонкой плёнки, улавливающий и отражающий струю разреженного газа, при этом диаметр струи газа, и точность попадания в сопло, может быть порядка сотен метров.

Но вариантов взаимодействия сопла с газом ещё очень много.

Например, если потребуется, можно сделать режим работы двигателя постоянным, без пульсаций давления газа, и с довольно умеренной температурой, на порядок меньшей, чем при полном торможении газа.

В исходном варианте вся кинетическая энергия газа вначале переходит в тепловую, и затем за счёт этой внутренней энергии газ расширяется назад. Это, в принципе, эффективно с точки зрения энергии, но есть недостатки.

Во-первых, при сильном нагреве газа в некоторых диапазонах температур значительная доля энергии затрачивается на атомизацию и ионизацию, что снижает работоспособность газа и КПД.

Кроме того, при ударном торможении газа о преграду резко повышается не только температура газа, но и давление, что тоже нехорошо.

Одним из вариантов решения этих проблем является неполное торможение газа, то есть прохождение его с довольно большой скоростью по некоему криволинейному проходному тракту переменного сечения, при одновременном изменении вектора скорости, давления и температуры.

В частности, это может быть U-образно изогнутая труба, постоянного или переменного сечения (с расширением на концах и сужением в зоне изгиба), оба открытых конца которой направлены назад. Струя газа входит в трубку через один раструб, сжимается в несколько раз, но не до полного торможения, так что только 5-10 % кинетической энергии переходит в тепло.

Скорость газа почти не уменьшается по величине, но вектор скорости разворачивается на 180о, и струя газа выходит назад через второй расширяющийся конец трубы, сохраняя более 95 % начальной скорости.

Если сравнить этот вариант с первоначальным, то есть полным переходом энергии газа в тепловую, и (частично) обратно в механическую, то КПД отличается очень сильно. В данном случае будет осуществляться почти идеально упругая передача максимального возможного импульса, в то время как при полном сжатии газа до остановки, его скорость затем восстанавливалась только на 50–70 %, и передавался импульс около 75–85 % (от максимально возможного при упругом отражении).

Для такого двигателя тоже возможна модификация с трубой большого диаметра из тонкой плёнки и приёмным раструбом диаметром 100 метров.

При скорости водорода относительно трубы в десятки км/с его температура может быть всего несколько тысяч градусов, а при скоростях в сотни км/с и температуре более 20.000 К можно использовать аналогичную конфигурацию магнитного поля.

В общем, очень хороший вариант.

Возможны и более сложные модификации, с разветвлением трубы более чем на два конца, которые могут быть направлены под разными углами друг к другу и к направлению полёта ракеты, через которые входят газовые потоки с разными скоростями от разных внешних источников. Например, так можно раздельно подавать извне как рабочее тело, с относительно небольшой скоростью, так и более высокоэнергетический носитель кинетической энергии, либо газы и плазму разного химического состава. При этом обмен импульсом и энергией между массами и потоками газов может осуществляться по разному, как при прямом механическом и атомарном взаимодействии, так и через посредство магнитных полей и токов. Для плазменного магнитного сопла можно предложить сложные конфигурации полей, осуществляющие функции энергетической и силовой машины, перерабатывающей потоки вещества и энергии.

1.9 Атмосферный

термо-кинетический двигатель (тепловая прямоточка)

При некоторых специальных условиях возможны и другие варианты поставки топлива и его нагрева; например, часть топлива может находиться на борту ракеты или прилетать в виде снарядов с большой скоростью, а другая представлять собой водород из атмосферы планеты вроде Юпитера. Это будет аналог теплового воздушно-реактивного двигателя с нагревом газа за счёт кинетической энергии бортового запаса топлива.

Такой аппарат будет довольно сложным технически, так как придётся лететь в верхних слоях атмосферы при довольно большой скорости и внешней температуре порядка 20–30 тысяч градусов. С другой стороны, он проще, чем вариант с потоком вещества в виде снарядов, так как не надо вообще ничего никуда запускать, топливо находится на борту. Я считаю, что в данных условиях техническая сложность реализации обоих вариантов будет примерно равной, и надо сравнивать их эффективность.

При начальной параболической скорости полёта в верхних слоях атмосферы Юпитера 60 км/с, и с учётом собственной немаленькой скорости вращения планеты, встречная скорость потока водорода уже вначале будет около 70 км/с. Далее она будет возрастать, и удельный импульс соответственно будет возрастать тоже, оставаясь на уровне 30 % разности скоростей аппарата и атмосферы планеты, так что удельный импульс (по затратам бортового запаса топлива) будет больше 20 км/с.

Чтобы увеличить свою скорость на 30 км/с, т. е. в 1,4 раза, ракете придётся уменьшить свою массу в 1,4^^3,3 = 3,2 раза (по "прогрессивной" формуле Циолковского, с УИ пропорциональным скорости).

Т.е. при начальной массе 16 тонн, и начальной параболической скорости (относительно центра планеты) 60 км/с, такой аппарат разгонится в атмосфере Юпитера от 60 до 90 км/с (относительно центра планеты), затратив 11 тонн топлива, и уменьшив свою массу с 16 до 5 тонн.

Выйдя после этого из гравитационного поля планеты на бесконечность, ракета будет иметь скорость 67 км/с.

Сравним этот результат с базовым вариантом термо-кинетического двигателя в вакууме, при котором 5,5 тонн топлива находятся на борту ракеты (имеющей собственную массу 5 тонн), а 5,5 тонн летят ей навстречу, имея вблизи границы атмосферы скорость 60 км/с.

В этом случае встречная скорость будет 120 км/с, и удельный импульс (в пересчёте на затрачиваемую массу бортового топлива) вдвое больше, чем в атмосферном варианте, т. е. около 40 км/с. Казалось бы, и конечная скорость ракеты должна быть больше…

Однако, общая масса снарядов (в данном случае, и всего топлива) по-прежнему 11 тонн, и их общая кинетическая энергия (в системе отсчёта планеты) такая же. Так что сильно больший результат мы не получим.

Теперь масса ракеты уменьшится с 10,5 до 5 тонн, т. е. в 2,1 раза. Извлечём корень 3,3 степени из 2,1 и получим, что скорость ракеты (в системе отсчёта встречного снаряда) увеличится в 1,25 раза, т. е. со 120 км/с до 150.

А скорость в системе отсчёта планеты увеличится с 60 км/с до 90. Вот. Как ни крути, а больше энергии, чем её есть, не извлечь…

То есть, результаты в обоих случаях в точности одинаковые, до процента, хотя, казалось бы, параметры сильно различаются.

Мы можем взять 16 тонн льда (на условно-бесконечном расстоянии от Юпитера), и получить на выходе 5 тонн, летящих в ту же бесконечность со скоростью почти 70 км/с. Причём, как выяснилось, детали взаимодействия вещества мало влияют на конечный результат, а в большей степени влияет начальный запас энергии, и коэффициент её преобразования в кинетическую энергию

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.