О. ОРЕ - Приглашение в теорию чисел Страница 18

Тут можно читать бесплатно О. ОРЕ - Приглашение в теорию чисел. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте 500book.ru или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
О. ОРЕ - Приглашение в теорию чисел
  • Категория: Научные и научно-популярные книги / Прочая научная литература
  • Автор: О. ОРЕ
  • Год выпуска: -
  • ISBN: нет данных
  • Издательство: -
  • Страниц: 23
  • Добавлено: 2019-02-10 17:32:44
  • Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала


О. ОРЕ - Приглашение в теорию чисел краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «О. ОРЕ - Приглашение в теорию чисел» бесплатно полную версию:
Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.

О. ОРЕ - Приглашение в теорию чисел читать онлайн бесплатно

О. ОРЕ - Приглашение в теорию чисел - читать книгу онлайн бесплатно, автор О. ОРЕ

Пример. Когда два сравнения из (7.3.5) перемножены, получается

77 = 45 (mod 8).

Сравнение a ≡ b (mod m) может быть умножено на любое целое число с, при этом получаем

ас ≡ bc (mod m). (7.3.7)

Это можно рассматривать как частный случай умножения сравнений (7.3.6) при с = d. Его можно также рассматривать как прямое следствие из определения сравнения.

Пример. Когда первое сравнение из (7.3.5) умножается на 3, получаем, что

33 = -15 (mod 8).

Возникает естественный вопрос: в каком случае можно в сравнении (7.3.7) сократить общий множитель с и получить при этом верное сравнение

a ≡ b (mod m)?

Именно здесь сравнения отличаются от уравнений. Например, верно, что

22 ≡ -2 (mod 8),

но сокращение на множитель 2 дало бы сравнение

11 ≡ -1 (mod 8),

которое неверно.

В одном важном случае сокращение допустимо:

если ас ≡ bc (mod m), то a ≡ b (mod m) при условии, что числа m и с взаимно просты.

Доказательство. Первое сравнение означает, что

ас — bc = (а — b) с = mk.

Если D(m, с) = 1, то отсюда следует, что а — b делится на m в соответствии с результатом, доказанным в § 2 главы 4.

Пример. В сравнении

4 ≡ 48 (mod 11)

мы можем сократить на множитель 4, так как D(11, 4) = 1. Это дает

1 ≡ 12 (mod 11).

Система задач 7.3.

1. Придумайте еще несколько примеров на использование изложенных правил действий со сравнениями.

§ 4. Возведение сравнений в степень

Предположим вновь, что имеется сравнение

a ≡ b (mod m).

Как мы только что видели, можно умножить это сравнение на себя, получив

а2 ≡ b2 (mod m).

Вообще можно, умножив это сравнение на себя нужное количество раз, получить

an ≡ bn (mod m)

для любого целого положительного числа m.

Пример. Из сравнения

8 ≡ -3 (mod 11)

после возведения в квадрат следует сравнение

64 ≡ 9 (mod 11),

а после возведения в куб получаем сравнение

512 ≡ -27 (mod 11).

Многие результаты теории сравнений связаны с остатками высоких степеней чисел, поэтому покажем, как можно продолжить процесс возведения в степень. Предположим, например, что мы хотим найти остаток сравнения

389 (mod 7).

Одним из путей для выполнения этого является повторное возведение в квадрат. Мы находим:

9 = 32 ≡ 2 (mod 7),

34 ≡ 4,

38 ≡ 16 ≡ 2,

364 ≡ 4 (mod 7).

Так как

89 = 64 + 16 + 8 + 1 = 26 + 24 + 23 + 1,

то отсюда следует, что

389 = 364 • З16 • З8 • 3 = 4 • 4 • 2 • 3 ≡ 5 (mod 7).

Таким образом, остаток (по модулю 7) есть 5, или, говоря другими словами, в соответствии с изложенным в § 2, последняя цифра числа З89, записанного в системе счисления при основании 7, равна 5.

В действительности, для того чтобы найти этот остаток, мы записали показатель степени

89 = 26 + 24 + 23 + 1 = (1, 0, 1, 1, 0, 0, 1)

в двоичной системе счисления. Повторным возведением в квадрат мы нашли остатки (по модулю 7) тех степеней числа 89, которые сами являются степенями числа 2:

1, 2, 4, 8, 16, 32, 64.

Соответствующий метод можно использовать для любых других оснований. Однако в частном случае бывает возможность упростить вычисление, если заметить особенности этого случая. Например, в случае, разобранном выше, мы можем отметить, что

33 ≡ -1 (mod 7),

З6 ≡ 1 (mod 7),

откуда заключаем, что

384 = (36)14 ≡ 1 (mod7).

Поэтому

389 = 384 • 33 • 32 ≡ 1 • (-1) • 2 = -2 ≡ 5 (mod 7),

как и раньше.

В качестве другой иллюстрации сказанного можно рассмотреть числа Ферма, с которыми мы познакомились в § 3 гл. 2:

Fn = 22ⁿ+1.

Первые пять чисел Ферма таковы:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

Отсюда можно высказать предположение:

десятичная запись всех чисел Ферма, за исключением F0 и F1 оканчивается цифрой 7.

Докажем с помощью сравнений, что это действительно так. Очевидно, что оно равносильно утверждению, что числа

22ⁿ, n = 2, 3…

оканчиваются цифрой 6. Это можно доказать по индукции. Заметим, что

22² = 16 ≡ 6 (mod 10),

22³ = 256 ≡ 6 (mod 10),

22ˆ4 = 65536 ≡ 6 (mod 10),

Более того, если мы возводим в квадрат число 22ˆk, то результатом будет число

Предположим, что для некоторого значения t

;

возводя в квадрат это сравнение, мы находим, что

,

что и требовалось.

§ 5. Теорема Ферма

Из алгебры мы знаем правила возведения бинома в степень:

(x + у)1 = х + у,

(х + у)2 = x2 + 2xy + y2,

(x + y)3 = х3 + Зx2y + Зху2 + у3,

(x + у)4 = х4 + 4х3у + 6х2у2 + 4ху3 + у4 (7.5.1)

и вообще

(х + у)p = хр + Cp1xp-1y + Ср2хр-2y2 +… + ур. (7.5.2)

Здесь первый и последний коэффициенты равны единице. Средними биномиальными коэффициентами являются

Cp1 = p/1, Ср2 = p(p-1)/(1  2), Ср3 = p(p-1)(p-2)/(1 • 2 • 3)… (7.5.3)

и вообще

Срr = p(p-1)(p-2)… (p — r + 1)/(1 2… r), (7.5.4)

Так как эти коэффициенты получаются в результате последовательного умножения на бином (х + у), то ясно, что они являются целыми числами.

С этого момента будем считать, что р — простое число. Чтобы записать эти коэффициенты в целочисленном виде, необходимо сократить все общие множители знаменателя

1 • 2 • 3 •… • r

и числителя

p(p-1)(p-2)… (p — r + 1)

Однако знаменатель не содержит простого множителя р, поэтому после сокращения число р останется множителем в числителе. Мы делаем вывод.

Все биномиальные коэффициенты (кроме первого и последнего) в выражении (7.5.2) делятся на р, если р — простое число.

Пусть теперь х и у в выражении (7.5.2) будут целыми числами. Если мы рассмотрим формулу (7.5.2) как сравнение по модулю р, то можно сделать вывод, что для любых целых чисел х и у и простого р

(х + у)p ≡ хр + ур (mod p). (7.5.5)

В качестве примера возьмем р = 5:

(х + у)5 = х5 + 5х4у + 10x3y2 + 10x2y3 + 5xy4 + у5.

Так как все средние коэффициенты делятся на 5, то

(х + у)5 ≡ х5 + у5 (mod 5)

в соответствии с (7.5.5).

Из сравнения (7.5.5) можно сделать важные выводы. Применим его для случая х = у = 1. Получаем

2p = (1 + 1)p ≡ 1p + 1p = 2 (mod p).

Возьмем затем х = 2, у = 1 и найдем, что

3p = (2 + 1)p ≡ 2p + 1p;

теперь, используя предыдущий результат, 2p ≡ 2 (mod p), получаем

2p + 1p ≡ 2 + 1 ≡ (mod p).

Итак, 3p ≡ 3 (mod p). Далее для х = 3, у = 1 получаем

4p ≡ 4 (mod p).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.