Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон Страница 5

- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Кэрролл Шон
- Страниц: 55
- Добавлено: 2025-02-18 19:00:02
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон» бесплатно полную версию:Ученые знают о том, как устроены наш мир, Вселенная, но знания эти чаще всего выражаются в виде формул, которые кажутся нам беспорядочным нагромождением букв и символов. Благодаря Шону Кэрроллу вы увидите в них вдохновляющую поэзию, взлетите в небеса, окрыленные ею, чтобы смотреть на чудесную многомерную страну — искривленное пространство-время, — в которой живут сияющие гиганты и действуют могучие силы. Высшая математика, словно веками полировавшийся алмаз, сама по себе достойна не меньшего восхищения, чем «Мона Лиза». Это язык, на котором написаны научные поэмы о черных дырах.
Книга написана в традициях легендарных лекций Ричарда Фейнмана, которые тот прочел шестьдесят лет назад. Это ослепительно яркий прожектор, помогающий людям из самых разных культур и поколений по-новому посмотреть на окружающий мир.
Шон Кэрролл, как никто другой, может объяснить самые трудные для понимания концепции, приоткрыть завесу, столь долго скрывавшую самые важные конструкции современной науки. Он обладает особым талантом излагать сложнейшие понятия в увлекательной форме, доходчиво доводить до читателя фундаментальные идеи, лежащие в основе реальной физики.
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон читать онлайн бесплатно
(1.3)
В классической механике сохраняются и импульс, и энергия. Однако кинетическая энергия сама по себе не сохраняется, поскольку может переходить в другие формы энергии (или возникать из них). При стрельбе из лука энергия, накопленная при натяжении тетивы, переходит в кинетическую энергию стрелы.
В простых обстоятельствах мы можем напрямую проследить, как энергия переходит из одной формы в другую. Физики любят приводить в пример шар, который катится по холму, где, как мы представляем, нет ни трения, ни сопротивления воздуха. Поднятый на высоту, шар обладает потенциальной энергией. На высоте h она будет равна:
(1.4)
Здесь m — масса шара, а g — ускорение, обусловленное силой тяжести вблизи поверхности Земли (или другой планеты, где проводится эксперимент). Численно g ≈ 9,8 метра в секунду за секунду, то есть скорость падающего предмета (без учета сопротивления воздуха) каждую секунду увеличивается на 9,8 метра в секунду. Таким было бы ускорение, даже если бы не было холма.

Когда шар катится с холма, его суммарная энергия Екинетич. + Епотенц. остается постоянной. При этом энергия переходит из одной формы в другую. Например, если шар поместить на склон, он покатится вниз. Его кинетическая энергия будет расти ровно настолько, насколько потенциальная энергия — уменьшаться.
Легко увидеть, как потенциальная и кинетическая энергии превращаются друг в друга. Другие формы энергии менее очевидны. Мы уже говорили о бильярдных шарах. Физики любят, когда они движутся по поверхности без трения, а при столкновении не издают звука, не выделяют тепла. При этом импульс и кинетическая энергия шаров полностью сохраняются: они просто отскакивают друг от друга. Такие столкновения называются упругими (возможно, вам говорили о таких на уроках физики).
Бывают и неупругие столкновения, при которых импульс сохраняется, но кинетическая энергия переходит в другую форму. Столкнем вместо бильярдных шаров два комка глины. Если в начальный момент их импульсы равны и направлены друг против друга, то есть , то при столкновении комки немного деформируются и слипнутся, образовав один неподвижный ком. Суммарный импульс не изменился, а кинетическая энергия — да. Она перешла в тепло и механическое напряжение.

Раньше ученые, в том числе и сам Ньютон, не до конца понимали, что импульс и энергия — разные вещи. Они полагали, что существует некая единая величина — «количество движения». Несложно объяснить, что такое импульс, в терминах механики Ньютона, в основе которой — прямолинейное и равномерное движение объектов, не подвергающихся воздействию сил. С энергией все не так просто. Впрочем, попытки были. Например, Готфрид Вильгельм Лейбниц (соперник Ньютона в области высшей математики) предложил новую величину — «vis viva», — которую он определил как mv2 и полагал важной для изучения движения.
Ситуацию прояснила Эмили дю Шатле — философ и физик из Франции, известная переводами книг Ньютона. Считая энергию независимой от импульса, но также сохраняющейся величиной, она провела опыт, задуманный голландским ученым Вильгельмом Гравезандом. Если бросить тяжелый шар в мягкую глину, он ожидаемо остановится в ней, полностью передав свой импульс земле. При этом в глине появится лунка, объем которой, как оказалось, зависит от квадрата скорости шара в момент удара, то есть от кинетической энергии. Именно ее шар и тратит на то, чтобы сделать лунку.
Возможно, вы слышали о «законе сохранения массы». Его считали верным, пока не появилась теория относительности. Согласно этой теории, импульс и энергия сохраняются (хотя их формулы несколько отличаются от написанных выше), масса же представляет собой особую форму энергии. В этом и заключается смысл знаменитого уравнения Эйнштейна — энергия неподвижного объекта (то есть при нулевой кинетической энергии) равна его массе, умноженной на квадрат скорости света:
(1.5)
Если для обычных тел закон сохранения массы можно считать достаточно точным приближением, то для частиц, скорость которых близка к скорости света, он не работает. Говоря о таких частицах, следует мыслить в терминах сохранения энергии[3].
Почему существуют законы сохранения?
Ученые любят задавать вопросы. Мы хотим знать, почему яблоки падают с деревьев, почему кофе и сливки смешиваются, почему горит и гаснет огонь, но часто при этом находим ответы, которые порождают новые вопросы. Нужно всегда быть готовыми к тому, что цепочка однажды прервется, и мы услышим в ответ: «Так есть, потому что так есть». И с этим уже ничего не поделать.
Так было и с законами сохранения. Однако, к счастью, в начале XX века была доказана теорема, которая установила связь этих законов с симметрией в природе. К такому замечательному выводу пришла Эмми Нётер, математик из Германии. Симметрия — это преобразование, которому может подвергнуться система при полном сохранении основных характеристик. Например, круг полностью симметричен относительно центра. Поэтому его можно повернуть на любой угол без внешних изменений. А вот квадрат сохраняет свой внешний вид только при повороте на угол, кратный 90°.
Теорема Нётер гласит, что любое плавное преобразование непрерывно симметричной системы связано с сохранением некоторой величины. Например, законы физики в целом симметричны при сдвигах в пространстве и времени. Мы можем провести опыт на одном месте, а затем повторить на другом, немного подождать и снова повторить. И мы получим один и тот же результат во всех этих случаях. Теорема Нётер связывает такую симметрию с уже известными нам законами сохранения. Неизменность при сдвигах в пространстве приводит к сохранению импульса, а при сдвигах во времени — к сохранению энергии. При этом важна размерность симметрии. Время одномерно, поэтому сохраняется лишь одна величина: энергия. Пространство трехмерно, мы можем перемещаться в любом из трех направлений. Поэтому импульс является вектором, который можно разложить на три компонента, по одному на каждое направление. В системах, где что-то вращается вокруг какой-то оси, появляется еще одна сохраняемая величина: момент импульса.

Рассматривая сдвиги в пространстве, сдвиги во времени и вращения, при которых система претерпевает пространственно-временные изменения, мы говорим о симметрии пространства-времени. В физике частиц и квантовой теории поля, которая изучает взаимодействие полей и их частей, существует понятие внутренней симметрии. Из-за нее сохраняются электрические заряды и другие свойства частиц.
Но есть одна важная тонкость. Кажущаяся нам симметрия законов физики нарушается, когда мы сами находимся внутри какой-то реальной системы. Например, Вселенная расширяется. Галактики постепенно отдаляются друг от друга, и в будущем расстояние между ними станет больше, чем было когда-то. Но если Вселенная изменяется при сдвигах во времени, значит, ее энергия не сохраняется. Если мы посчитаем суммарную энергию во всех известных нам формах материи (излучение, обычная материя, темная материя, темная энергия и т. д.), получится число, которое будет меняться со временем. Можно попробовать обойти этот факт, определив энергию в кривизне самого пространства-времени. Пока что такие попытки не дали нам положительных результатов. Поэтому нет ничего страшного в том, чтобы вычислить суммарную энергию «области пространства» или «всех объектов в какой-то области» и признать, что она не является постоянной.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.