Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич Страница 8

Тут можно читать бесплатно Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич. Жанр: Научные и научно-популярные книги / Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте 500book.ru или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич
  • Категория: Научные и научно-популярные книги / Математика
  • Автор: Елисеев Дмитрий Сергеевич
  • Страниц: 16
  • Добавлено: 2020-10-31 03:15:07
  • Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала


Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич» бесплатно полную версию:

Вниманию читателей представляется книга «Рассказы о математике с примерами на языках Python и C». В книге описаны различные истории или задачи, прямо или косвенно связанные с математикой (магические квадраты, простые числа и пр). Кратко рассмотрены более сложные моменты, например выполнение вычислений с помощью GPU.

Книга распространяется бесплатно, скачать оригинал в PDF можно на странице http://www.dmitryelj.spb.ru/math.htm.

Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич читать онлайн бесплатно

Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич - читать книгу онлайн бесплатно, автор Елисеев Дмитрий Сергеевич

Напишем программу для построения магических квадратов размерности N. Первый подход будет «в лоб», напрямую. Создадим массив, содержащий все числа от 1 до N2 и получим все возможные перестановки этого массива. Их число довольно-таки велико, и составляет 1 * 2 * .. * N = N! вариантов. Также для каждого массива необходимо проверить, является ли он «магическим», т. е. выполняется ли требование равенства сумм.

Для получения всех перестановок воспользуемся алгоритмом, описанным здесь — https://prog-cpp.ru/permutation/.

Код программы приведен ниже:

def swap(arr, i, j):

    arr[i], arr[j] = arr[j], arr[i]

def next_set(arr, n):

    j = n - 2

    while j != -1 and arr[j] >= arr[j + 1]: j -= 1

    if j == -1:

        return False

    k = n - 1

    while arr[j] >= arr[k]: k -= 1

    swap(arr, j, k)

    l = j + 1

    r = n – 1

    while l < r:

        swap(arr, l, r)

        l += 1

        r -= 1

    return True

def is_magic(arr, n):

    for i in range(0, n):

        sum1 = 0

        sum2 = 0

        sum3 = 0

        sum4 = 0

    for j in range(0, n):

        sum1 += arr[i * n + j]

        sum2 += arr[j * n + i]

        sum3 += arr[j * n + j]

        sum4 += arr[(n – j - 1) * n + j]

    if sum1 != sum2 or sum1 != sum3 or sum1 != sum4 or sum2 != sum3 or sum2 != sum4 or sum3 != sum4:

        return False

return True

def show_squares(n):

    N = n * n

    arr = [i + 1 for i in range(N)]

    cnt = 0

    while next_set(arr, N):

        if is_magic(arr, n):

            print(arr)

            cnt += 1

    return cnt

# Требуемая размерность

cnt = show_squares(3)

print("Число вариантов:", cnt)

Программа выдала 8 вариантов для N = 3, время вычисления составило 2 секунды:

[2, 7, 6, 9, 5, 1, 4, 3, 8] [6, 1, 8, 7, 5, 3, 2, 9, 4] [2, 9, 4, 7, 5, 3, 6, 1, 8] [6, 7, 2, 1, 5, 9, 8, 3, 4] [4, 3, 8, 9, 5, 1, 2, 7, 6] [8, 1, 6, 3, 5, 7, 4, 9, 2] [4, 9, 2, 3, 5, 7, 8, 1, 6] [8, 3, 4, 1, 5, 9, 6, 7, 2]

Действительно, как известно, существует только 1 магический квадрат 3x3:

Рассказы о математике с примерами на языках Python и C (СИ) - img_18.jpeg

Остальные являются лишь его поворотами или отражениями (очевидно что при повороте квадрата его свойства не изменятся).

Теперь попробуем вывести квадраты 4х4. Запускаем программу… и ничего не видим. Как было сказано выше, число вариантов перебора для 16 цифр равняется 16! или 20922789888000 вариантов. На моем компьютере полный перебор такого количества занял бы 1089 дней!

Однако посмотрим на магический квадрат еще раз:

Рассказы о математике с примерами на языках Python и C (СИ) - img_19.jpeg

Суммы всех элементов по горизонтали и вертикали равны. Из этого мы легко можем записать равенство его членов:

x11 + x12 + x13 + x14 = x21 + x22 + x23 + x24 x11 + x12 + x13 + x14 = x14 + x24 + x34 + x44 x11 + x12 + x13 + x14 = x13 + x23 + x33 + x43 x11 + x12 + x13 + x14 = x12 + x22 + x32 + x42 x11 + x12 + x13 + x14 = x11 + x21 + x33 + x44 x11 + x12 + x13 + x14 = x31 + x32 + x33 + x34

И наконец, общая сумма: т. к. квадрат заполнен числами 1..16, то если сложить все 4 строки квадрата, то получаем 4S = 1 + .. + 16 = 136, т. е. S = 34 (что соответствует приведенной в начале главы формуле).

Это значит, что мы легко можем выразить последние элементы через предыдущие:

x14 = S - x11 - x12 - x13

x24 = S - x21 - x22 - x23

x34 = S - x31 - x32 - x33

x41 = S - x11 - x21 - x31

x42 = S - x12 - x22 - x32

x43 = S - x13 - x23 - x33

x44 = S + x14 - x14 - x24 - x34

Что это дает? Очень многое. Вместо перебора 16 вариантов суммарным количеством 16! = 20922789888000 мы должны перебрать лишь 9 вариантов, что дает 9! = 362880 вариантов, т. е. в 57657600 раз меньше! Как нетрудно догадаться, мы фактически выразили крайние строки квадрата через соседние, т. е. уменьшили размерность поиска с 4х4 до 3х3. Это же правило будет действовать и для квадратов большей диагонали.

Обновленная программа выглядит более громоздко (в ней также добавлены проверки на ненулевые значения и проверки на уникальность элементов), зато расчет происходит в разы быстрее. Здесь также используется возможность работы со множествами в языке Python, что легко позволяет делать перебор нужных цифр в цикле:

set(range(1, 16 + 1)) - множество чисел [1..16]

set(range(1, 16 + 1)) - set([x11]) - множество чисел [1..16] за исключением x11.

Также добавлена простая проверка на минимальность суммы: очевидно, что сумма всех элементов не может быть меньше чем 16 + 1 + 2 + 3 = 22.

digits = set(range(1,16+1))

cnt = 0

for x11 in digits:

    for x12 in digits - set([x11]):

        for x13 in digits - set([x11, x12]):

            for x14 in digits - set([x11, x12, x13]):

                s = x11 + x12 + x13 + x14

                    if s < 22: continue

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.