Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы Страница 56

Тут можно читать бесплатно Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте 500book.ru или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы
  • Категория: Научные и научно-популярные книги / Математика
  • Автор: Альберт Рывкин
  • Год выпуска: -
  • ISBN: -
  • Издательство: -
  • Страниц: 118
  • Добавлено: 2020-11-13 05:48:25
  • Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту pbn.book@yandex.ru для удаления материала


Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы» бесплатно полную версию:
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы читать онлайн бесплатно

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы - читать книгу онлайн бесплатно, автор Альберт Рывкин

Площадь треугольника AFM в восемь раз меньше площади треугольника ABC, т. е. равна 8 . Высота треугольника AFM (F — середина AB), опущенная из вершины F, в два раза меньше высоты треугольника ABD, опущенной из вершины B. Так как AM : AD = 5 : 8, то площадь треугольника AFM относится к площади треугольника ABD как 5 относится к 2 · 8, т. е. как 5 : 16.

Зная, что площадь треугольника AFM равна ⅛, можно теперь найти и площадь треугольника ABD.

Ответ. 2/5.

1.32. Способ 1. Пусть R — радиус окружности, а α, β и γ − вписанные углы, опирающиеся соответственно на стороны AB, BC и AD (рис. P.1.32). Углы, опирающиеся на одну и ту же дугу, равны (это отмечено на рисунке). Углы DBC и DAC тоже равны, и их нетрудно вычислить: ∠ DBC = ∠ DAC = π − (α + β + γ). По теореме синусов 

AB = 2R sin α, BC = 2R sin β, DC = 2R sin (α + β + γ), AD = 2R sin γ.

Таким образом,

AB · DC + AD · BC = 4R² [sin α sin(α + β + γ) + sin β sin γ] = 2R² [cos(β + γ) − cos(2α + β + γ) + cos(β − γ) − cos(γ + β)] = 2R² [cos (β − γ) − cos(2α + β + γ)].

Так как

AC = 2R sin (α + β), BD = 2R sin (α + γ),

то

AC · BD = 4R² sin (α + β) sin (α + γ) = 2R² [cos (β − γ) − cos (2α + β + γ)].

Итак,

AB · DC + AD · BC = AC · BD.

Способ 2. Введем обозначения: AB = а, BC = b, CD = с, DA = d, AC = e, BD = f. Нужно доказать, что ac + bd = ef. Выберем на диагонали AC точку E так, чтобы угол CBE был равен γ. Тогда треугольники CBE и DBA подобны. Поэтому EC : b = d : f.

Из подобия треугольников ABE и DBC (углы ABE и DBC равны как равносоставленные) получаем AE : а = с : f. Определим из первого соотношения EC, а из второго AE и сложим эти два равенства:

откуда ас + bd = ef, что и требовалось доказать.

1.33. Продолжим боковые стороны AB и CD трапеции (рис. P.1.33) до пересечения в точке S. Если через S и M (где M — середина BC) провести прямую, то она пересечет AD в точке N, которая является серединой AD.

Из подобия треугольников BSM и ASN имеем

откуда

Так как по условию MN = AN − BM, то BM = SM и треугольник SMB равнобедренный. Аналогично доказывается, что треугольник SMC также равнобедренный. Следовательно, угол SMC равен удвоенному углу А, а угол SMB — удвоенному углу D (по свойству внешнего угла треугольника). Но оба этих угла SMB и SMC образуют развернутый угол. Следовательно, сумма углов А и D равна 90°.

1.34. Пусть AB = а, MR = x (рис. P.1.34).

Выразим через а и x длины отрезков MQ, MS и MP. Ясно, что для этого достаточно найти длину отрезка QM, поскольку MS = а − QM, а MP = а − x. Так как QM = CR = CK + KR, то вычислим CK и KR. По условию AN = а/3, а потому (треугольники OLN и OL1K равны) CK = а/3. Чтобы найти KR, рассмотрим подобные треугольники MKR и NKN1:

откуда KR = x/3, а QM = а/3 + x/3. Остается убедиться в том, что числа а − x, 2a − x/3, а + x/3, x образуют арифметическую прогрессию с разностью 2x − a/3.

1.35. Пусть CE = x (рис. P.1.35).

Выразим через x отрезок AE из треугольника ACE, в котором угол CAE равен 30°: AE = x√3 . С другой стороны, AE = AB − BE, а так как BE = CE = x, то AE = 2 − x. Итак, 2 − x = x√3 , откуда x = √3 − 1.

Заметим, что KF = FB = ½; площадь искомой фигуры равна

SACD + SBCD − SBKL = 2SACB − SBKL.

Ответ. 2√3 − 9/4 .

1.36. Углы при нижнем основании трапеции и основании треугольника равны. Обозначим их через α. Тогда угол BAO равен углу ABO, т. е. равен 90° − α (рис. P.1.36). Поэтому угол OAD равен 2α − 90°. Так как треугольник MNO равнобедренный (MO = NO), то угол MNO равен α, а угол NOE равен 90° − (180° − 2α), т. е. равен 2α − 90°.

Треугольники ONE и AOD равны (по гипотенузе и острому углу). Следовательно, OE = AD. Кроме того, MO = OB, как два радиуса, и NE = OD, как стороны равных треугольников. Это означает, что BD = l.

По условию AD · BD = S, следовательно, OE = AD = S/l.

Ответ. S/l.

1.37. Из подобия треугольников AOD и BOC (рис. P.1.37) находим, что MO/NO = p, т. е. MN/NO = p + 1.

Отношение площадей трапеции и треугольника AOD можно записать в виде

Ответ. (p + 1)².

1.38. Пусть R — радиус окружности, n — число сторон первого многоугольника, x — периметр третьего.

Периметры первого и второго многоугольников равны соответственно

Периметр третьего равен

Сравнивая первые два выражения, найдем, что 1 − tg²π/2n = b/a. Следовательно,

Ответ.

1.39. Если точки О и M расположены так, как показано на рис. Р.1.39, а, то NM > KL, так как хорда NM ближе к центру окружности. Но NM < а, а KL = 2а. Получаем а < 2а, что невозможно. Следовательно, фигуры расположены так, как показано на рис. Р.1.39, б.

Центр рассматриваемой окружности лежит на биссектрисе угла AOB, так как точка О1 равноудалена от лучей AO и OB.

Предположим для определенности, что угол α больше угла β. Треугольник OMO1, в котором сторона OM равна а, сторона MO1 равна R, а ОО1 легко выражается через R, позволяет составить уравнение для определения R. B самом деле, угол MOO1 равен α − α + β/2 = α − β/2. Следовательно, по теореме косинусов

R² = а² + ОО1² − 2а · ОО1 · cos α − β/2.

Из треугольника О1ОВ находим

а так как  то

После подстановки уравнение относительно R выглядит следующим образом:

Заменим  на  и после несложный упрощений

получим

откуда

Ответ.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.